Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The field of nuclear science has considerably advanced since its begin- ning just over a century ago. Today, the science of rare isotopes is on the cusp of a new era with theoretical and computing advances comple- menting experimental capabilities at new facilities internationally. In this article we present a vision for the science of rare isotope beams (RIBs). We do not attempt to cover the full breadth of the field, but rather provide a perspective and address a selection of topics that re- flect our own interests and expertise. We focus in particular on systems near the drip lines, where one often finds nuclei that are referred to as “exotic,” and where the role of the “nuclear continuum” is only just starting to be explored. An important aspect of this article is the at- tempt to highlight the crucial connections between nuclear structure and nuclear reactions required to fully interpret and leverage the rich data to be collected in the next years at RIB facilities. Further, we con- nect the e↵orts in structure and reactions to key questions of nuclear astrophysics.more » « less
-
Abstract Lifetimes of higher-lying states ($$2_2^+$$ and$$4_1^+$$ ) in$$^{16}$$ C have been measured, employing the Gammasphere and Microball detector arrays, as key observables to test and refine ab initio calculations based on interactions developed within chiral Effective Field Theory. The presented experimental constraints to these lifetimes of$$\tau ({2_2^+}) = [\,244, 446]\,~\textrm{fs}$$ and$$\tau ({4_1^+}) = [\,1.8, 4]\,~\textrm{ps}$$ , combined with previous results on the lifetime of the$$2_1^+$$ state of$$^{16}$$ C, provide a rather complete set of key observables to benchmark the theoretical developments. We present No-Core Shell-Model calculations using state-of-the-art chiral 2- (NN) and 3-nucleon (3N) interactions at next-to-next-to-next-to-leading order for both the NN and the 3N contributions and a generalized natural-orbital basis (instead of the conventional harmonic-oscillator single-particle basis) which reproduce, for the first time, the experimental findings remarkably well. The level of agreement of the new calculations as compared to the CD-Bonn meson-exchange NN interaction is notable and presents a critical benchmark for theory.more » « less
An official website of the United States government

Full Text Available